

SES

Contents:

	Getting Started
	Installing SES

	Try it out

	Bundlers

	Building from scratch

	Webworkers

	SES API

	Draft Spec for Standalone SES
	Omissions and Simplifications

	Additions

	Work in Progress

	Stage Separated SES

SES is a JavaScript package [https://www.npmjs.com/package/ses]
that allows you to run third-party code safely. It runs in Node.js and
in the browser.

Getting Started

SES is a JavaScript package [https://www.npmjs.com/package/ses]
that allows you to run third-party code safely. It runs in Node.js and
in the browser.

Installing SES

In Node.js:

npm install ses

In the browser:

<script src="https://unpkg.com/ses"></script>

Try it out

In a Node.js repl, after running npm install ses:

const SES = require('ses');
const s = SES.makeSESRootRealm({consoleMode: 'allow', errorStackMode: 'allow'});
// NOTE: errorStackMode enables confinement breach, do not leave on in production
s.evaluate('1+2'); // returns 3
s.evaluate('1+a', {a: 3}); // returns 4
function double(a) {
 return a*2;
}
const doubler = s.evaluate(`(${double})`);
doubler(3); // returns 6

In the browser after loading SES:

const s = SES.makeSESRootRealm(...);
s.evaluate(...);

Bundlers

SES works with the main bundlers such as Webpack, Browserify, Rollup,
and Parcel. Simply install SES using npm and require or import it.

Building from scratch

Clone the SES repo [https://github.com/Agoric/SES] and run npm
run-script build, which will create a variety of files under
dist/. ses.cjs.js is the CommonJS version of SES, ses.esm.js
is the ES6 module version, and ses.umd.js is the UMD version
intended for the browser.

Webworkers

Note that the Realm shim currently requires either the Node.js vm
module, or a browser’s <iframe> element (it does
document.createElement('iframe')), so it won’t work in a DOM-less
WebWorker, SharedWorker, or ServiceWorker. If/when the
Realms proposal becomes a standard part of Javascript, these
environments ought to have a native Realm object available, and SES
should work in all of them.

SES API

The main entry point to SES is
const s = SES.makeSESRootRealm(options). This creates a new SES
“root” Realm, in which all primordials are frozen, all sources of
non-determinism are disabled, and all means of escape are blocked off.

The main utility of this new s object (which we might call the
“realm controller”) is the s.evaluate() method. This currently takes
two arguments: s.evaluate(code, endowments). code is a string
that defines a javascript expression, and endowments is an object
whose properties will be made available in the global lexical scope of
that expression.

The code is evaluated in a new global object, so assigning anything to
it is not generally useful: s.evaluate('let a = 3') is legal, but
useless, since a subsequent s.evaluate('a+1') won’t see the same
a. On the other hand, s.evaluate('let a = 3; a+1') will yield 4,
because the same a is in scope throughout both parts of the same
evaluation.

The code is evaluated as an expression, so to get a function object back
out, you must wrap it in parenthesis, or evaluate an arrow function:

let d1 = s.evaluate('(function double(a) { return a+a; })');
d1(1); // 2
let d2 = s.evaluate('(function(a) { return a+a; })');
d2(1); // 2, function is anonymous
let d3 = s.evaluate('a => a+a');
d3(1); // 2

s.evaluate() takes a string, but usually you write javascript in
files with an editor, so there are some tricks to make it comfortable to
edit the code you’re going to submit to be evaluated. Most (but not
all!) javascript engines will remember the source code of the functions
you define, and stringifying the function object (e.g. with the backtick
“template literal” operator) will retrieve its source code. We can use
this to write a function as usual, then pass its stringified form into
evaluate:

// we define inner but never invoke it in the outer realm, it exists only to be
// stringified
function inner(a) {
 return a+a;
}

let d4 = s.evaluate(`(${inner})`);

caveats: inner must not reference anything outside its curly
brackets, as that won’t be available during its evaluation (i.e. it
cannot “close over” variables from outside, as cool as that’d be). On
the other hand, you can use “endowments” to provide names that this will
look up:

// note: 'b' is not defined anywhere in the outer realm. Within the definition of 'inner', it is
// an unbound/free variable. Many linters and editors will notice this and complain.
function inner(a) {
 return a+b;
}

let d5 = s.evaluate(`(${inner})`, { b: 2 });
d5(1); // 3

You can evaluate an entire file, with multiple function definitions that
reference each other, but only the final expression will be returned.

You may want to use rollup or some bundling tool with an API to turn
multiple files into a single string. These source files can
require() (CommonJS-mode) or import (ES6-module mode) each
other, but the final string must not have any require/import statements,
because s.evaluate() only evaluates a string and does not do module
lookup (but see s.makeRequire() for a helper function that can
provide something similar to require()).

Endowments are provided in the global lexical scope of the code being
evaluated, where they can be referenced with free variables. The “global
lexical scope” is not the same thing as the “global object”. Using
this at the top level of the evaluated code references a sort of
global object (which is frozen), which has properties like Number
and Array but not the endowments.

TODO: an example that shows the differences between this.a=3 (which
fails because the sort-of-global object is frozen), let a = 3 (which
modifies the other kind of global object, which is not frozen, but which
goes out of scope at the end of evaluation), let a = 3 with
endowments=x={} (which I think shadows the endowment in the
ephemeral global object and does not set x.a=3 in the outer
realm), and a+1 (which probably looks at the ephemeral global object
first, then falls back to the endowment)

Another common way to pass endowments is as arguments to a generated
function.

function makeAdder(b) {
 return a => a+b;
}

let d6 = s.evaluate(`(${makeAdder})`)(4);
d6(1); // 5

Both approaches let the generated function close over the endowment, but
using the endowments argument makes them available globally
everywhere inside the evaluated code, whereas passing them as an
argument makes them only available to the function that the code yields,
which might enable finer-grained POLA.

The most common use for endowments (of either sort) is to safely allow
in-Realm code access facilities from outside the realm. For example, the
Realm’s consoleMode: 'allow' feature is implemented with something
like:

console.log('this is the real console object');
function makeConsole() {
 return {
 log(...args) {consoleEndowment.log(...args);}
 }
}

const newConsole = s.evaluate(`(${makeConsole})()`, {consoleEndowment: console});
s.evaluate('console.log(4)', { console: newConsole });

Wrapping endowments like this is critical for security, because the
simple approach would reveal an outer-realm object to the confined code,
which it could use to escape confinement by modifying the parent Realm’s
primordials like the toString() method on Objects:

function evil() {
 const outerObjectPrototype = consoleEndowment.log.__proto__.__proto__;
 outerObjectPrototype.toString = obj => 'haha';
}

s.evaluate(`(${evil})()`, { consoleEndowment: console });
({}).toString(); // prints 'haha'

The key is that we evaluate trusted code to generate the safe endowment,
and only pass the safe endowment to the untrusted code. Every object in
the system should be examined to identify which realm it is coming from
(outer or inner), and never ever reveal outer-realm objects to untrusted
code. Even passing a collection of safe inner-realm objects to untrusted
code enables a confinement breach:

const safeConsole = ...;
const safeAdder = ...;
s.evaluate(`(${untrustedCode})()`, { collection: { safeConsole, safeAddres } });
// the 'collection' object is outer-realm, and enables a breach

The safest approach is to build a bunch of outer-realm helper functions,
bundle your entire application into a single string that defines a
bootstrap function which accepts those helpers as an argument, then
invoke the bootstrap function. Other patterns are in development,
specifically ones that use require or import and a manifest of
authorities to implement safe module loading.

The SES.makeSESRootRealm() call takes an options bundle. This
affects what features of the realm are enabled or disabled. The default
is to provide full confinement, which means that calling
s.evaluate(code) (with no endowments, and discarding the return
value) will never affect the outer realm, no matter what ‘code’ might
contain. (This is clearly useless, like asking whether a tree falling in
the woods makes a sound if there’s nobody around to hear it). The
default is also fully deterministic: no aspects of the platform will
affect the execution of the code.

The options bundle can accept some keys which weaken these properties in
exchange for other useful behavior.

	SES.makeSESRootRealm({consoleMode: 'allow'}): the default setting
removes the console from the global scope, but setting this to
allow brings it back. The in-realm console is not as
fully-featured as the usual one that browsers or Node.js provides,
but the most common methods are present.

	errorStackMode: 'allow': To prevent confinement breaches, several platform-specific properties of Error objects are removed. Unfortunately this breaks the display of line numbers and file names, stack traces, and frequently the Error string itself. Exceptions that are not caught normally cause Node to exit with a stack trace: the SES default setting causes Node to printundefined`
and exit with no other explanation, which is particularly annoying.
We currently recommend turning this on only temporarily while
debugging an uncaught exception. Do not turn it on outside of
debugging, because we believe it causes a confinement breach.
Hopefully we’ll find a way to fix this and enable sensible Error
reporting without enabling a breach, at which point we’ll change the
default value.

	mathRandomMode: 'allow': Since SES is supposed to be
deterministic, Math.random() is a problem. By default it is
disabled, and calling it throws an exception. When this mode is
allow, Math.random is enabled. This introduces non-determinism,
but if the platform’s PRNG is sound, it should not enable the
confined code to sense a covert channel, nor should it enable
communication between otherwise isolated objects.

	dateNowMode: 'allow': Allowing Date.now() to return the
current time would both cause non-determinism and allow the reading
of covert channels (enabling communication between isolated objects),
and most applications don’t need it, so this is disabled by default
too. This affects both the static Date.now() call and the
zero-argument new Date() constructor.

	intlMode: 'allow': The platform normally supplies a default
locale, for use in Intl.DateTimeFormat and Intl.NumberFormat
calls that don’t supply a specific locale to use. This platform
locale introduces nondeterminism, so these must be disabled. The
default setting is to delete the entire Intl object, but setting
this to allow brings everything back. We may be able to bring
back most of Intl by default, but platforms currently appear to
supply the platform-default locale even to calls that supply a
specific one, if the requested locale is not available (e.g.
Intl.NumberFormat('es') will return the default locale’s
formatter function if it doesn’t have a Spanish one available), which
will take more work to tame.

	rexexpMode: 'allow': several platforms provide non-standard
properties on regexps that would enable communication between
otherwise isolated objects. These are removed by default, but ‘allow’
would let them remain (enabling a confinement breach).

The realm controller object returned by SES.makeSESRootRealm() has
basically three useful properties:

	s.evaluate(code, endowments): described above

	s.global: this is the (frozen) global object inside the new
Realm. Not actually very useful.

	s.makeRequire(config)

makeRequire is a helper function to construct an in-realm
require object, so that the same code can be run outside of SES
(where it uses Node.js’s normal require() feature), or inside SES
(where it uses the helper’s version). It takes a config object that
names the modules that can be imported, and describes what they should
get when they do the import. The configuration syntax is intended to
protect outer-realm objects against accidental exposure (which would
enable a confinement breach).

const Nat = require('@agoric/nat');
const SES = require('ses');
const s = SES.makeSESRootRealm();
function mymod(x) {
 return x+x;
}

const req = s.makeRequire({'@agoric/nat': Nat, double: mymod})
function inner(y) {
 const double = require('double');
 const Nat = require('@agoric/nat');
 return double(Nat(y));
}
const inner = s.evaluate(`(${inner})`, {require: req});
inner(1); // 2
inner(-1); // Error since -1 is not a natural number

If the value of a config object element is a function, that function
will be stringified, then evaluated inside the realm, then hardened, and
the result is used as the module value (i.e. it is returned by any
require(modname) done while that require endowment is in scope).
This works for simple standalone functions that are designed to be
stringified this way, like the Nat from @agoric/nat and the
mymod function above. This won’t work for functions that depend upon
external references.

Note that makeRequire has an internal cache of modules, so any
module that creates some mutable state (and makes it possible for
callers to interact with it) may enable communication between otherwise
isolated clients. A future version of makeRequire might help with the
creation of “pure” modules that do not enable this unauthorized
communication.

If the value of a configuration element is an object, makeRequire
evaluates its .attenuatorSource property to get a function, then
invokes that function with the rest of the configuration value. The
result is hardened and used as the new module. This is intended to help
build attenuating wrappers around external authorities.

We expect to change this API a lot. Eventually it should grow into a
safe module loader, to enable some new variant of s.evaluate that
looks more like a module load (with a corresponding manifest of
acceptable authorities).

Javascript’s eval() is a one-argument evaluator: it takes source
code and evaluates it, producing a value or a function. The native
eval() allows that source code to access the same lexical scope as
the eval itself, which makes it unsafe for use on untrusted code.

Instead, SES offers a “safe two-argument evaluator”. The “safe” property
means that it doesn’t give access to the scope of the invoker, making it
safe to use with untrusted code. The second argument is a set of
endowments to provide in place of that unsafe caller’s scope.

From outside a Realm, you use s.evaluate(code, endowments) to invoke
this safe two-argument evaluator. From inside a Realm, you instead of
SES.confine(code, endowments). This does the same thing, but acts
“in-place” (from inside a realm).

If the code provided to s.evaluate() throws an error, the error
object is mapped into an outer-Realm Error type before being
exposed, to avoid accidents. The error object thrown by SES.confine
is from the same realm as the SES object.

We also have a confineExpr variant. TODO: how exactly does this
differ, when would you use it?

TODO: ambient SES within a realm is likely to go away, in favor of
require('ses') and a special s.makeRequire() mode (just like
require('@agoric/harden') is special). Not sure if that’s good
enough, or if the safe two-argument eval is important enough to
expose in some easier way.

Draft Spec for Standalone SES

In the Realms, Frozen Realms, Realms shim, and SES shim work, we’ve
generally worked towards standardizing the APIs for dynamically
creating a SES world from within a standard EcmaScript world. For IoT
or blockchain purposes, the more relevant question is: What is the
resulting standard SES world, independent of whether it was created from
within a standard EcmaScript world, or whether it was implemented
directly by a standalone SES engine that supports only SES?

(We use “blockchain” here as shorthand for the more general category of
deterministically replicated SES computation, whether on a blockchain,
permissioned BFT system, or whatever.)

Omissions and Simplifications

Since the primary purpose of the existing Realms/SES APIs and shims are
to dynamically suppress parts of standard EcmaScript, a standalone SES
engine would simply omit these elements, resulting in a simpler and
smaller engine. Starting from standard EcmaScript, the simplification or
omissions for the default configuration of SES are

	Omit all support for sloppy mode

	Aside from BigInt, omit everything else outside the EcmaScript 2018 spec.

	In particular, omit the import() and import.meta expressions.

	Omit annex B (except those our whitelist allows)

	In particular, omit the RegExp static properties that provide a global communications channel.

	Omit Math.random()

	
	Omit ambient access to current date/time:

	
	Date.now() returns NaN

	new Date() return equivalent of new Date(NaN)

	By default, omit Intl, the internationalization APIs

	If some of Intl is included, it must suppress ambient authority and non-determinism.

	
	For all forms of function expressible by syntax (function, generator, async-function, async-generator)

	
	func.[[Prototype]].constructor is a function constructor that always throws. Because these function constructors always throw, we do not consider them to be evaluators.

We define the shared globals as all the standard shared global
variable bindings defined by the above, i.e., without Intl by
default, with Realm (see below), without eval, without
Function, without anything outside the EcmaScript 2018 spec, and
with BigInt. We define the shared primordials as all the objects
transitively reachable from the shared globals. Note that no global
objects or evaluators are reachable from the shared primordials.

Additions

Some IoT and blockchain configurations may omit all runtime evaluators.
For standalone SES configurations that include runtime evaluators, they
would appear as follows.

	Include the portion of the Realm API for creating compartments, and
for evaluating script code in a compartment with endowments:

	Realm.makeCompartment(options={}) -> aRealm instance
representing a new compartment

	Realm.prototype.global —> global object of compartment. This
is a getter-only accessor.

	Realm.prototype.evaluateProgram(programSrcString, endowments={})
–> completion value

	The own properties of the endowments which are legal variable
names become the const variable bindings of the global lexical
scope in which the program is evaluated. Unlike standard
EcmaScript, there is no shared global lexical scope. Each
global lexical scope comes only from the endowments.

	Realm.prototype.evaluateExpr(exprSrcString, endowments={}) –>
value of expression

	Given that exprSrcString parses as an expression,
js aRealm.evaluateExpr(exprSrcString, endowments) is
equivalent to
js aRealm.evaluateProgram(`(${exprSrcString});, endowments)`

The additional element from the proposed Realm API is
Realm.makeRootRealm(options={}). SES allows but does not require
this static method. IoT and blockchain uses of SES generally have no
need for multiple root realms. However, browser-based and Node-based
use of SES will often be coupled with creating multiple confined root
realms. On platforms that do not support Realm.makeRootRealm, the
property must be absent so that SES code can feature-test for it.

	Freeze all shared primordials. With the above omissions, there is no
hidden state or ambient authority among the shared primordials, so
transitive freezing means that the shared primordials are immutable
and rom-able. Since no global objects or evaluators are reachable
from the shared primordials. They can be placed in ROM without the
bookkeeping needed for them to point at any objects not in ROM.

	For each compartment, create a new global populated by:

	The shared globals with their standard global property names.

	An eval function and Function constructor that evaluates
code in the scope of that global

	Both this eval function and Function constructor
inherit from the shared %FunctionPrototype% primordial.

	Each of these eval functions is considered an initial eval
function for purposes of determining whether a an expression in
direct-eval syntax is indeed a direct-eval. (The direct-eval
feature is impossible to shim and rarely needed anyway, and so
is low priority. When omitted, the direct-eval syntax should
also be statically rejected with an early error.)

	Function.prototype is initialized to point at the same
shared %FunctionPrototype% primordial.

	All of these global properties are made non-configurable
non-writable data properties. The new per-global objects (the eval
function and Function constructor) are frozen. Since they have no
hidden state, they are immutable and rom-able.

	This new global object is not frozen. It remains extensible.
However, the global’s [[Prototype]] slot cannot be altered.

	The host creates a start-compartment whose start-global is populated
as above.

	To that start-global object, the host adds global bindings to those
host objects that provide initial access to the program’s outside
world, e.g., the I/O environment of the device.

	The program’s start scripts are then evaluated as program code in
that start-compartment.

Each compartment scope has its own Function, which does evaluate.
All compartment scopes share the same Function.prototype and
therefore the same Function.prototype.constructor which is a
function that only throws. Thus, in all compartment scopes,

Function !== Function.prototype.constructor

TBD: * What portion of the additions above are relevant to a standalone
SES without runtime evaluators? * Should eval and Function
actually be on a compartment’s global object, or should we include them
in the compartment’s global lexical scope?

Work in Progress

We are still working towards specifying how SES supports modules.
Indeed, this is the main topic of the SES-strategy sessions. Somehow,
whether by import, require, or otherwise, a SES environment must provide
access to the exports of the packages currently named ‘@agoric/nat’ and
‘@agoric/harden’, which will normally be bound to const variable named
Nat and harden. We’ll revisit all this is a separate document.

TBD: * System * error stacks * weak references * loader? *
Should SES provide support for require and core CommonJS Modules? *
Where should Nat and harden come from? * SES *
SES.confine

Stage Separated SES

Full SES, as embedded into EcmaScript, supports running vetted
customization code in a freezable realm prior to freezing it into a SES
realm. Such vetted customization code runs in an environment like that
described above except: * The shared primordials are not yet frozen *
No host objects have been added to the global. Thus the vetted
customizations run fully confined, without access to any external world.

Although the custoimizations run confined, because they can arbitrarily
mutate the shared primordial state before other code runs, all later
code is fully vulnerable to these custiomizations. This is why we refer
to them as vetted customization code. Once the shared primordial state
is transitively frozen, then we can support the standalone SES
environment described above, where compartments are units of protection
between subgraphs of mutually suspicious objects.

A analogy is that vetted customizations are what a shopkeeper does to
their shop in preparation for opening for business. Freezing the
primordials is the last step before opening the doors and allowing in
untrusted customers.

In an IoT context, we should associate these two stages with build-time
and runtime. The build-time environment should support more of the
Realms and SES APIs for creating a SES world, that would be absent from
within the standalone SES world they are creating. The freezing of the
primordials is the snapshotting of the post-constomization primordial
state for transfer to ROM.

Index

 nav.xhtml

 Table of Contents

 		
 SES

 		
 Getting Started

 		
 Installing SES

 		
 Try it out

 		
 Bundlers

 		
 Building from scratch

 		
 Webworkers

 		
 SES API

 		
 Draft Spec for Standalone SES

 		
 Omissions and Simplifications

 		
 Additions

 		
 Work in Progress

 		
 Stage Separated SES

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

